

FIBER OPTIC SENSING EQUIPMENT

SENSING EBER OPTIC

Distributed fiber optic sensing (DFOS) is a disruptive technology set to change the way infrastructures are managed. DFOS can turn any optical fiber into thousands of sensors and monitor tens of kilometers of assets with a single interrogator, making it a very cost effective and non-intrusive solution that is being adopted by more industries every year.

With a patent portfolio and our in-house expertise, Aragon Photonics is able to provide unique DFOS equipment that allows customers to perform measurements of continuous acoustic, strain and temperature, during long periods of time and for large distances.

Apart from creating high-end DFOS equipment, Aragon Photonics can help customers to develop custom tailored solutions. Also, we participate in R&D projects mostly focused in seismic activity monitoring and Third-party intrusion.

CONVENTIONAL USERS & APPLICATIONS

THE CUSTOMER

THE APPS

OUR SOLUTION

Universities & Research centers

Seismic activity DFOS investigation DAS technology is spread around the world for earthquake detection and seismic monitoring, urban subsurface monitoring and seismic noise analysis. Our products provide superb pure RAW data ready for being processed by geologists and geophysicists.

Application developers

Pipeline leakage Third party intrusion Infrastructure health Aragon Photonics products are perfect devices for application developers who want to add value to their current solutions. Our open platform helps to reduce time and efforts on data handling and postprocessing for live and predictive analysis.

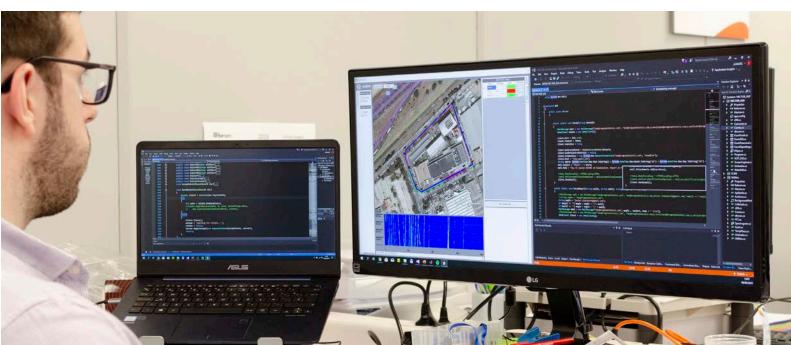
2

System integrators

Assets monitoring Energy & Transport Border and security Today, security of assets includes fiber optic based systems, punctual and distributed. System integrators can use our DAS and DTSS to provide precise monitoring of electrical power cables, railways, traffic or borders.

Contact us for more info!

OUR JOURNEY IN FIBER OPTIC SENSING


Aragon Photonics started its activities on Fiber Optic Sensing in 2014 collaborating with the University of Zaragoza to develop DFOS equipment based in Direct Detection C-OTDR.

Later, in 2018, Aragon Photonics acquires FOCUS SL and its Chirped-pulse Phase OTDR technology developed by the University of Alcalá de Henares and CSIC. The first official launch of the DFOS Business Line happens in 2019.

Since then, we have been evolving our products to adapt them to the needs of the market, specially to our partners: application developers and integrators.

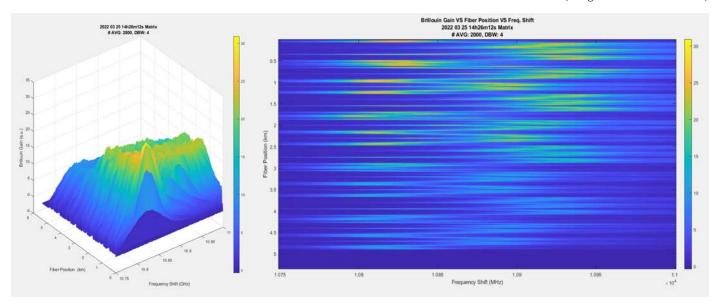
BLAST

Distributed Temperature Sensing (DTS), that allows for the precise measurement of temperature values along a conventional fibre, is one of the most common DFOS techniques, with a wide range of uses and already stablished applications in different environments. Different methods and technologies can be employed to obtain DTS measurements.

Aragon Photonics presents a Brillouin Optical Time Domain Analyser (BOTDA) technology based DTSS capable of reliable and precise temperature measurements along a conventional fiber. Presented in a simple to use and highly configurable interrogator that can provide to both scientific and industrial groups an invaluable tool to develop new research and applications.

KEY FEATURES

- Up to 0.1 degrees sensitivity
- Down to 1 m spatial resolution
- Direct temperature readings (reference required)
- Easy to use configuration and straightforward measurement
- Up to 50 km loop reach without amplification
- Complete configurable acquisition time capable of fast (<30 sec) measurement times
- Two boxes: Optical Unit & Processing Unit



TECHNOLOGY

BLAST is a DTSS-system based on BOTDA technology that implements novel techniques and methods that improve the quality and reduce the noise in the final measurements. The interrogator measures thousands of points along a continuous loop of fibre obtaining values of Brillouin Frequency Shift (BFS) that can be converted to direct temperature readings over the fiber.

BLAST offers a simple and direct DTSS measurement taking advantage of an improved Brillouin detection technique to improve the quality of the BFS measurements and thus improve the temperature values acquired, providing a consistent and low noise performance along all the fiber loop.

BLAST DTSS measurement of terrain deformation caused by sinkholes near Ebro river in Alcala de Ebro (Aragon, SPAIN, 2020-2022)

Brillouin Loop Analyzer of Strain and Temperature

TECHNICAL SPECIFICATIONS

Measurement	
Wavelength	1550 ± 0.5 nm
Measurement channels	1 channel (loop)
Distance range	50 km in loop 85 Km with amplification (preliminary)
Spatial resolution (gauge length)	1 to 25 m
Spatial sampling	1 m
Accuracy (σ) ¹	<0.1 °C
Dynamic range	Brillouin shift: ± 2 GHz Tª: up to 600 °C
Measurement time	Mín: 30 sec for 10 Km Typ: 5 min for 50 Km
System interfaces	
Optical connector	SC/APC
Data	Ethernet 1 Gb, USB 3.0
Video	HDMI, DP

^{1.} Over last 4 km, 3 m spatial resolution, 150 MHz (2 MHz step) frequency scan, 50 km G.652D fiber.

OTHER SPECIFICATIONS

Physical & electrical	
Optical Unit	19" rackable,, 5U, 40 cm depth, <15 Kg
Processing Unit	19" rackable, 4U, 50 cm depth, $<$ 23 Kg 2
Temperature range	+15 to +35 °C
Power	110/220 V, 50/60 Hz, < 500 W

2. Without added storage drives

APPLICATIONS

BLAST has been built and designed with a simple configuration approach that allows to easily modify the key parameters of measurement to adapt it to the end-user demands. The versatility of the interrogator allows for its use in multiple applications:

- Infrastructure health monitoring
- Power cable monitoring
- Oil &gas monitoring (pipeline leak)
- Renewable energy control and prospection (geothermal)
- Fire hazard detection
- Thermal energy generation
- Ice formation monitoring in cables and structures

Contacter WAVETEL - FRANCE

tel: +33(0)2 99 14 69 65 email: sales@wavetel.fr web: www.wavetel.fr

WAVETEL PARIS | RENNES | LARMOR-PLAGE | LANNION

