R&S®ESSENTIALS

R&S®RTB 2 SERIES OSCILLOSCOPE

Power of ten for every task, everyday

Product Brochure Version 01.01

ROHDE&SCHWARZ

Make ideas real

POWER OF TEN FOR EVERY TASK, EVERYDAY

R&S®RTB 2 series oscilloscopes combine the power of ten with smart operating concepts to make them a perfect general-purpose tool for students, hobbyists, technicians and engineers. The R&S®RTB 2 series is the follow up to the high-performance R&S®RTB2000 oscilloscope. Try one in the lab and see the difference.

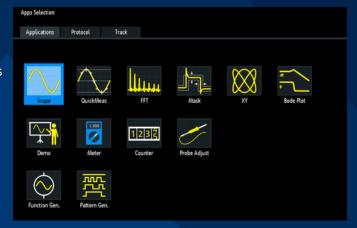
Power of ten:

- ➤ 10-bit ADC
- ➤ 10 Mpoints memory
- ➤ 10.1" capacitive touchscreen
- ▶ 10 s boot time
- ➤ 10-in-1 instruments

70/100/200/300 MHz bandwidth

Up to 2.5 Gsample/s sample rate

Up to 260 Mpoints in segmented mode


MSO-ready

WHY ENGINEERS LOVE ROHDE & SCHWARZ OSCILLOSCOPES

- ► A trusted, global company with a long-standing commitment to customers, quality and continuous innovation
- ▶ The newest oscilloscope portfolio from 60 MHz to 16 GHz
- Superior intuitive user interface and front panel to increase productivity
- ▶ Best-in-class time-domain and frequency-domain measurements

WHY THE R&S®RTB 2 SERIES

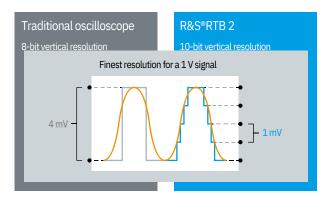
10-in-1 instrument: oscilloscope, protocol analyzer, logic analyzer, waveform and pattern generator, digital multimeter, frequency response analyzer, spectrum analyzer, counter and mask tester

SEE SIGNAL DETAILS

IN THE PRESENCE OF LARGE SIGNALS

10-bit vertical resolution

The R&S®RTB 2 includes a customized Rohde & Schwarz 10-bit A/D converter and is a four-fold improvement over conventional 8-bit A/D converters. The higher resolution generates sharper waveforms and reveals more details that would otherwise be missed.


The R&S®RTB 2 oscilloscope incorporates low-noise frontends and state-of-the-art A/D converters. High-resolution mode further reduces noise by applying a filter across contiguous samples.

Low noise: full measurement bandwidth down to 1 mV/div

The R&S®RTB 2 oscilloscope has excellent sensitivity down to 1 mV/div. Traditional oscilloscopes can only have such input sensitivity with software based magnification or limiting bandwidth.

Need to see large signals? The variable gain amplifier accepts up to 5 V/div. Use a 10:1, 100:1 or even higher attenuation probe to safely measure larger signals.

10-bit A/D converter: uncovers even small signal details

The Rohde & Schwarz designed 10-bit A/D converter ensures highest signal fidelity at highest resolution

CAPTURE MORE TIME

DEEP STANDARD MEMORY

Deep memory as an insurance policy

Along with bandwidth and sample rates, memory depth is the most important factor when determining oscilloscope troubleshooting capacity. More acquisition memory lets oscilloscopes capture more time. More memory lets oscilloscopes retain the maximum sample rate and bandwidth even with slower timebase settings.

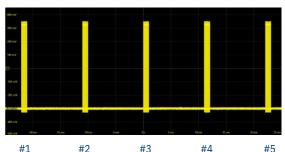
Time captured = (memory depth) / (sample rate)

Maintain fast sample rates with slow timebase settings


Ever adjusted your oscilloscope timebase to capture longer periods of time, pressed stop, then zoomed in to find the signal details are not quite right? This is the aliasing problem common to oscilloscopes with shallow memory capacity. The deep R&S®RTB 2 memory enables longer time captures at full sample rates.

Standard segmented memory

Use segmented memory to capture signals separated by inactivity. Examples include laser pulses, serial bus activity and RF pulses. R&S®RTB 2 series oscilloscopes have a segmented memory to capture signals over long observation periods of up to 13 000 segments and up to 260 Mpoints total (13 000 segments × 20 kpoints per segment).


Standard history capability

Press stop and use the history mode to see previously captured acquisitions. All measurement and analysis tools are available in the history mode, including the serial bus decoding and automatic measurements. Turn on persistence to see a waveform overlay of all captured events. Turn on measurements with statistics to see measurement progression across the entire history.

Traditional single-shot acquisition

Total acquisition time = memory depth/sample rate

Segment

Segmented memory acquisition

Acquisition time per segment = memory depth/# of segments

FREQUENCY RESPONSE ANALYSIS

CREATING BODE PLOTS

Low-frequency response analysis

Use the R&S®RTB-K36 frequency response analysis option (Bode plot) for quick and easy low-frequency response analyses with your oscilloscope.

Characterize the frequency response for several electronic devices, including passive filters and amplifier circuits. The control loop response and power supply rejection ratio for switch mode power supplies can also be measured. The stimulus can be generated with a standard built-in waveform generator.

The frequency response analysis option turns on the integrated waveform generator to create stimulus signals ranging from 10 Hz to 25 MHz. Measuring the ratio of the stimulus signal to the DUT output signal at each test frequency, the oscilloscope also logarithmically plots gain and phase.

The R&S®RT-ZP1X 38 MHz bandwidth 1:1 passive probe reduces probe noise for the best signal-to-noise ratio (SNR) for weak signals.

Features and functions

Create up to 16 generator amplitude output level steps to optimize the SNR at different frequencies when measuring CLR and PSRR.

Define the number of points per decade to trade off measurement speed versus resolution.

The oscilloscope display shows analog waveforms and the resulting Bode plots in parallel.

The table of measurement results displays the gain and phase for each frequency tested. Analyze with markers and the result table. Save screenshots, result tables or both to a USB drive.

The R&S®RTB-K36 frequency response analysis (Bode plot) option characterizes the frequency response of a variety of electronic devices, including passive filters and amplifier circuits

THE BEST CHOICE FOR EDUCATION

Ready for the teaching lab

Let students prepare for the working world with an oscilloscope used by companies in the industry. Use the password-protected education mode to disable automatic functions, such as autoset, so students can learn the fundamental concepts. On your PC, type in the IP address and use the built-in web server to easily show the oscilloscope display in a classroom or over a network.

X-in-1 integration saves space and money

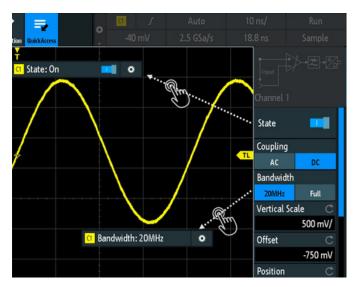
The R&S®RTB 2 gives students and educators an oscilloscope plus logic and protocol analyzer, waveform and pattern generator, Bode analysis, digital voltmeter, spectrum analyzer and counter. The compact design, quiet operation and small footprint save precious bench space in the lab.

Perfect instruments for everyday educational with broad functionality, rugged design, quiet operation and small footprint

FUN TO DRIVE

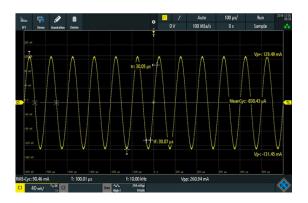
15-MINUTE LEARNING CURVE, INTUITIVE NAVIGATION

Multilingual support: choose among thirteen languages

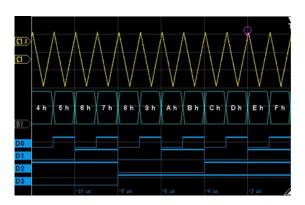

Choose from English, German, French, Spanish, Italian, Portuguese, Czech, Polish, Russian, simplified and traditional Chinese, Korean and Japanese.

Touch any signal icons to bring up a short menu of common settings.

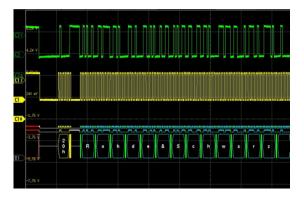
Drag & drop key settings on the display for fast access without having to navigate in the menu.



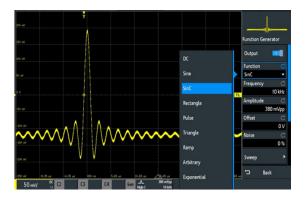
Add annotations to document screenshots including hand-drawn graphics.


X-IN-1 OSCILLOSCOPE

Oscilloscope


Get quick insight with the intuitive and powerful oscilloscope function. The superior sample rate, memory, depth and ADC resolution, make the R&S®RTB 2 oscilloscope a leader in its class.

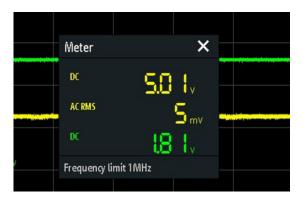
Standard tools are included for quick results, such as QuickMeas, mask tests, FFT, math, cursors and automatic measurements, including statistics.


Logic analyzer

Every R&S®RTB 2 oscilloscope is MSO-ready and can connect two logic probes to turn every R&S®RTB 2 into an intuitive MSO with 16 additional digital channels. The oscilloscope captures and analyzes signals from analog and embedded digital design components – synchronously and time-correlated.

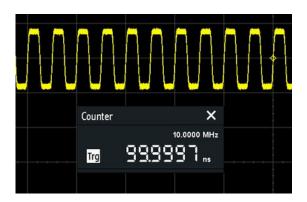
Serial bus protocol analyzer

Protocols such as IĈ, SPI, UART/RS-232, CAN and LIN frequently transfer control messages between integrated circuits. The R&S®RTB 2 has versatile options for protocol-specific triggering and decoding of serial interfaces.



Waveform and pattern generator

Standard on all R&S®RTB 2 instruments, the integrated waveform (25 MHz) and pattern generator (up to 50 Mbit/s) provides circuit stimulus to emulate missing circuits. Or take advantage of educational opportunities for waveform and pattern generation. Waveforms and patterns can be imported as CSV files or copied from oscilloscope waveforms. Add noise to generated waveforms to simulate unfriendly environments. Predefined I2C, SPI, UART and CAN/LIN patterns are available for pattern generation. Select a pattern or enter patterns manually.



Digital voltmeter

The R&S®RTB 2 features a three-digit digital voltmeter (DVM). Choose from DC, AC + DC (RMS) and AC (RMS).

Counter

Use the standard integrated counter to measure frequencies, such as the trigger rate.

FFT (spectrum analyzer)

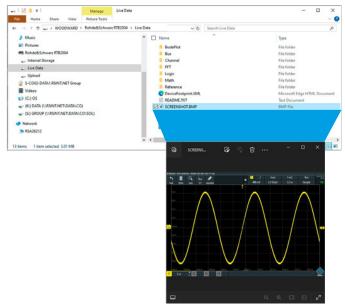
The FFT function on the R&S®RTB 2 is activated at the push of a button. Use it as a spectrum analyzer by entering center frequency and span. Autoset and cursor measurements can be used to measure the fast frequency-domain measurements.

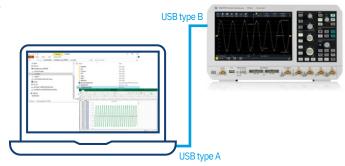
Mask test mode

Use mask tests to quickly reveal whether a specific signal is within defined tolerance limits. Mask testing provides statistical pass/fail evaluations. Quickly identify violations and gather pass/fail statistics. Each violation can generate a pulse output at the AUX-OUT connector.

LAN AND USB CONNECTIVITY

USB and LAN I/O

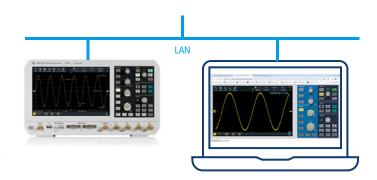

All R&S®RTB 2 oscilloscopes come with both LAN and USB type B ports located on the rear panel (see area outlined in blue in the photo) for versatile control and data management options. The USB type B port simplifies file sharing with the easy transfer of saved waveforms, screenshots and measurement data directly to a connected PC. The connection eliminates the need for additional software and makes it easier to work with captured data and have it readily available for analysis and documentation. The combination of USB and LAN I/O on the R&S®RTB 2 series is a powerful, flexible and user-friendly interface for both local and remote oscilloscope control.



MTP connectivity

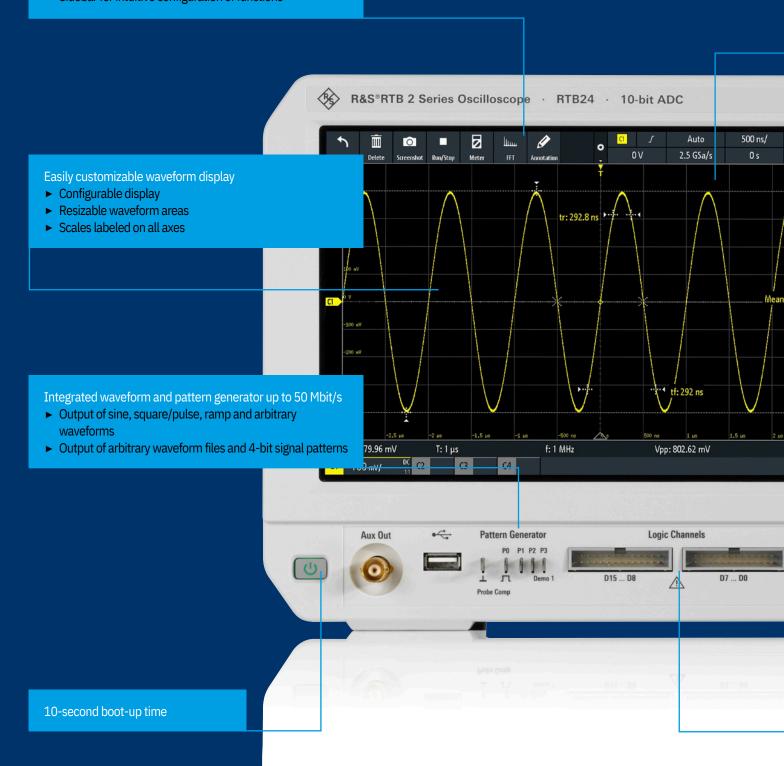
The R&S®RTB 2 oscilloscopes have seamless media transfer protocol (MTP) connectivity to PCs via the USB host port. File sharing and data management are exceptionally easy. Once connected, the oscilloscope appears on your PC as an additional drive, like a USB flash drive. This intuitive function lets users directly access files stored on an oscilloscope without additional drivers or complex setup procedures.

Transferring data is a simple drag & drop process with MTP. Screenshots can be quickly opened in popular applications such as PowerPoint or Word, streamlining report genera- tion by eliminating the need to manually save and import images. Similarly, waveform data can be easily transferred into Excel or other data analysis tools for immediate pro- cessing and quick post-measurement analysis. Extra steps are eliminated and workflows sped up so that captured data is instantly ready for further use. The R&S®RTB 2 oscilloscope MTP function makes users much more efficient by simplifying the handling of measurement data and screenshots, The oscilloscope is vital tool for both quick documentation and indepth analysis.



LAN connectivity

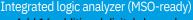
The R&S®RTB 2 oscilloscopes are engineered for a very efficient and user-friendly remote control experience through advanced LAN connectivity. By simply entering the IP address for an oscilloscope into any web browser, users can immediately access the complete instrument interface. Oscilloscope parameters can be adjusted and monitored in real time with a virtual front panel, effectively eliminating the need for physical interaction with the instrument. The virtual front panel is very useful in remote testing scenarios where physical access to the oscilloscope is limited or impractical.


The LAN interface supports standard commands for programmable instruments (SCPI) for robust program control that integrates seamlessly with automated test setups. Using SCPI commands is critical for incorporating the oscilloscope into larger automated systems or when precise, remote instrument operation is required. The builtin web interface helps both with comprehensive controls but also simplifies data management. Users can capture screenshots and transfer measurement data directly to a PC without additional software or manual data entry. Streamlining data sharing and reporting enhances productivity and makes it easy to swiftly document and analyze results from a remote location. The combination of intuitive web based controls, versatile programming capabilities and efficient data entry with an LAN connection makes the R&S®RTB 2 series a powerful and adaptable solution for any laboratory.

10.1" HIGH-RESOLUTION CAPACITIVE TO

Quick access to important tools

- ► Drag & drop use of analysis tools
- ► Toolbar for access to functions
- ► Sidebar for intuitive configuration of functions



JCHSCREEN WITH GESTURE SUPPORT

10.1" high-resolution capacitive touchscreen with gesture support

- ► Gesture support for scaling and zooming
- ► More display area than similar oscilloscopes
- ► See a sharper image with more pixels: 1280 × 800 pixel resolution

- ► Add 16 additional digital channels
- Get time-correlated analysis of analog and digital signals

Rohde & Schwarz R&S®RTB 2 Series Oscilloscops 13 nac +33(0)2 99 14 69 65

OSCILLOSCOPE PORTFOLIO

		A A A A A A A A A A A A A A A A A A A	هُرِهُ هُرِهُ إِمْرِ مِسَالِمِهِ إِنَّا عَلَى مِنْ اللَّهِ عَلَى اللَّهِ عَلَى اللَّهِ عَلَى اللَّهِ	
	R&S®RTH1000	R&S ®RTC1000	R&S®RTB 2	R&S®RTM3000
Vertical system	TOO THIE SOO	1100 11101000	ndo mbz	Tao minoso
Bandwidth 1)	60/100/200/350/500 MHz	50/70/100/200/300 MHz	70/100/200/300 MHz	100/200/350/500 MHz/1 GHz
Number of channels	2 plus DMM/4	2	2/4	2/4
Vertical resolution;		0 1:0 47 1:0		
system architecture	10 bit; 16 bit	8 bit; 16 bit	10 bit; 16 bit	10 bit; 16 bit
V/div, 1 MΩ	2 mV to 100 V	1 mV to 10 V	1 mV to 5 V	$500~\mu V$ to $10~V$
V/div, 50 Ω	-			$500\mu V$ to 1 V
Digital channels	8	8	16	16
Horizontal system				
Sampling rate per channel (in Gsample/s)	1.25 (4-channel model);2.5 (2-channel model);5 (all channels interleaved)	1; 2 (2 channels interleaved)	1.25; 2.5 (2 channels interleaved)	2.5; 5 (2 channels interleaved)
Maximum memory (per channel; 1 channel active)	125 kpoints (4-channel model); 250 kpoints (2-channel model); 500 kpoints	1 Mpoints; 2 Mpoints	10 Mpoints; 20 Mpoints	40 Mpoints; 80 Mpoints
Segmented memory	standard, 50 Mpoints	-	standard, 260 Mpoints	option, 400 Mpoints
Acquisition rate (in waveforms/s)	50 000	10 000	50 000 (300 000 in fast seg- mented memory mode)	64 000 (2 000 000 in fast segmented memory mode 2))
Trigger				
Types	digital	analog	analog	analog
Sensitivity	-	-	at 1 mV/div: > 2 div	at 1 mV/div: > 2 div
Analysis				
Mask test	tolerance mask	tolerance mask	tolerance mask	tolerance mask
Mathematics	elementary	elementary	basic (math on math)	basic (math on math)
Serial protocols triggering and decoding 1)	I2C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN FD, SENT	I2C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN	I2C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN	I2C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I2S, MIL-STD-1553, ARINC 429
Applications ^{1), 2)}	high-resolution frequency counter, advanced spectrum analysis, harmonics analysis, user scripting	digital voltmeter (DVM), com- ponent tester, fast Fourier trans- form (FFT)	digital voltmeter (DVM), fast Fourier transform (FFT), frequency response analysis	power, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis
Compliance testing 1), 2)	-	-	-	-
Display and operation				
Size and resolution	7" touchscreen, 800 × 480 pixel	6.5", 640 × 480 pixel	10.1" touchscreen, 1280 × 800 pixel	10.1" touchscreen, 1280 × 800 pixel
General data				
Dimensions in mm (W × H × D)	201 × 293 × 74	285 × 175 × 140	390 × 220 × 152	390 × 220 × 152
Weight in kg	2.4	1.7	2.5	3.3
Battery	lithium-ion, > 4 h	-	-	-
,	,			

 $^{^{1)}}$ Upgradeable. $^{2)}$ Requires an option.

The second secon			The second secon
M XO 4	M XO 5 / M XO 5 C	R&S®RTO6	R&S®RTP
200/350/500 MHz/1/1.5 GHz	100/200/350/500 MHz/1/2 GHz	600 MHz/1/2/3/4/6 GHz	4/6/8/13/16 GHz
4	4/8	4	4
12 bit; 18 bit	12 bit; 18 bit	8 bit; 16 bit	8 bit; 16 bit
500 μV to 10 V	500 μV to 10 V	1 mV to 10 V (HD mode: 500 μV to 10 V)	
500 μV to 1 V	500 μV to 1 V	1 mV to 1 V (HD mode: 500 μ V to 1 V)	2 mV to 1 V (HD mode: 1 mV to 1 V)
16	16	16	16
2.5; 5 (2 channels interleaved)	5 on 4 channels; 2.5 on 8 channels (2 channels interleaved)	10; 20 (2 channels interleaved in 4 GHz and 6 GHz model)	20; 40 (2 channels interleaved)
standard: 400 Mpoints; max. upgrade: 800 Mpoints 2)	standard: 500 Mpoints max. upgrade: 1 Gpoints 2)	standard: 200 Mpoints/800 Mpoints; max. upgrade: 1 Gpoints/2 Gpoints	standard: 100 Mpoints/400 Mpoints; max. upgrade: 3 Gpoints
standard: 10 000 segments; option: 1 000 000 segments	standard: 10 000 segments; option: 1 000 000 segments	standard	standard
> 4 500 000	> 4 500 000 on 4 channels	1 000 000 (2 500 000 in ultra-segmented memory mode)	750 000 (> 3 000 000 in ultra-segmented memory mode)
advanced (includes zone trigger), digital trigger (15 trigger types)	advanced (includes zone trigger), digital trigger (15 trigger types)	advanced (includes zone trigger), digital trigger (15 trigger types), high speed serial pattern trigger including 5 Gbps clock data recovery (CDR) 2)	advanced (includes zone trigger), digital trigger (14 trigger types) with real-time deembedding 2), high speed serial pattern trig- ger including 8/16 Gbps clock data recovery (CDR) 2)
0.0001 div, across full bandwidth, user controllable	0.0001 div, across full bandwidth, user controllable	0.0001 div, across full bandwidth, user controllable	0.0001 div, across full bandwidth, user controllable
		user configurable, hardware based	user configurable, hardware based advance
advanced (formula editor)	advanced (formula editor)	advanced (formula editor, Python interface)	(formula editor, Python interface) I2C, SP UART/RS-232/RS-422/RS-485,
I2C, SPI, UART/RS-232/RS-422/ RS-485, CAN, CAN FD, CAN XL, LIN, ARINC 429, MIL-STD-1553, SPMI, 10BASE-T1S, ARINC, QUAD-SPI	I2C, SPI, UART/RS-232/RS-422/ RS-485, CAN, CAN FD, CAN XL, LIN, ARINC 429, MIL-STD-1553, SPMI, 10BASE-T1S, 100BASE-T1, ARINC, QUAD-SPI	I2C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I2S, MIL-STD-1553, ARINC 429, FlexRay™, CAN FD, MIPI RFFE, USB 2.0/HSIC, MDIO, 8b10b, Ethernet, Manchester, NRZ, SENT, MIPI D-PHY, SpaceWire, MIPI M-PHY/UniPro, CXPI, USB 3.1 Gen 1, USB-SSIC, PCIe 1.1/2.0, USB Power Delivery, Automotive Ethernet 100/1000BASE-T1	SENT, CAN, LIN, CAN FD, MIL-STD-1553, ARIN 429, SpaceWire, USB 2.0/HSIC/PD, USB 3. Gen 1/Gen 2/SSIC, PCIe 1.1/2.0/3.0, 8b10l MIPI RFFE, MIPI D/M-PHY/UniPro, Automotiv Ethernet 100/100BASE-TX MDIO, Mancheste NRZ
power, digital voltmeter (DVM), frequency response analysis	power, digital voltmeter (DVM), frequency response analysis	power, advanced spectrum analysis and spectrogram, jitter and noise decomposition, clock data recovery (CDR), I/Q data and RF analysis (R&S®VSE), deembedding, embedding, equalization, PAM-N, TDR/TDT analysis, advanced eye diagram see specifications (PD 5216.1640.22)	advanced spectrum analysis and spectrogram, jitter and noise decomposition, real-time deembedding, embedding, equalization, PAM-N, TDR/TDT analysis, I/Q data and RF analysis (R&S*VSE), advanced eye diagram
-		, , , , , ,	see specifications (PD 3683.5616.22)
13.3" touchscreen,	for MXO 5 only: 15.6" touchscreen,	15.6" touchscreen,	13.3" touchscreen,
1920 × 1080 pixel (Full HD)	1920 × 1080 pixel (Full HD)	1920 × 1080 pixel (Full HD)	1920 × 1080 pixel (Full HD)
	MXO 5: 445 × 314 × 154		
414 × 279 × 162	MXO 5C: 445 × 105 × 405	450 × 315 × 204	441 × 285 × 316
6	MXO 5: 9 MXO 5C: 8.7	10.7	18
-	-	-	-

SPECIFICATIONS IN BRIEF

Specifications in brief		
Vertical system Number of channels	R&S®RTB22, R&S®RTB24	2, 4
Bandwidth (–3 dB)	R&S®RTB22/24 (with R&S®RTB-B2x1, R&S®RTB-B2x2 and R&S®RTB-B2x3 options)	70 MHz, 100 MHz, 200 MHz, 300 MHz 5 ns, 3.5 ns, 1.75 ns, 1.15 ns
Rise time (calculated)	70 MHz, 100 MHz, 200 MHz, 300 MHz	$1 \text{ M}\Omega \pm 2 \% \text{ with 9 pF} \pm 2 \text{ pF (meas.)}$
Input impedance	76 1 112, 100 1 112, 200 1 112, 000 1 112	1 mV/div to 5 V/div
Input impedance Input sensitivity	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, ,
• •	max. bandwidth in all ranges	
DC gain accuracy	offset and position = 0, maximum operating temp	· · ·
	input sensitivity > 5 mV/div	± 1.5 % of full scale
	input sensitivity ≤ 5 mV/div	± 2 % of full scale
ADC resolution		10 bit, up to 16 bit with high resolution mode
Acquisition system		
Maximum sampling rate		1.25 Gsample/s, 2.5 Gsample/s in interleaved mode
Acquisition memory		10 Mpoints, 20 Mpoints in interleaved mode
	with segmented memory	max. 260 Mpoints
Horizontal system		
Timebase range		1 ns/div to 500 s/div
Trigger system		
Trigger types	standard	edge, width, video (PAL, NTSC, SECAM, PAL-M, SDTV 576i, HDTV 720p, HDTV 1080i, HDTV 1080p), pattern, runt, rise time, fall time, serial bus, timeout, line
	included with serial bus options	I2C, SPI, UART/RS-232/RS-422/RS-485, CAN/L
Analysis and measurement functions		
QuickMeas	at the push of a button, measurement values are continuously written onto the waveform	peak-to-peak voltage, pos. peak, neg. peak, rise time, fall time, mean value, RMS value, time, period, frequency
Waveform mathematics		addition, subtraction, multiplication, division, FF
MSO option (R&S®RTB2-B1)		
Digital channels		16 (2 logic probes)
Maximum sample rate		1.25 Gsample/s
Acquisition memory		10 Msample
Waveform generator		
Resolution, sample rate		14 bit, 250 Msample/s
Amplitude	high Z, 50 Ω high Z, 50 Ω sine	20 mV to 5 V (V pp), 10 mV to 2.5 V (Vpp)
DC offset	pulse/rectangle ramp/triangle	±2.5 V, ±1.25 V
Signal forms frequency ranges	noise sampling rate, memory	0.1 Hz to 25 MHz
, , ,	depth	0.1 Hz to 10 MHz
	dopin	0.1 Hz to 1 MHz
		max. 25 MHz
Arbitrary		max. 10 Msample/s, 16 kpoints
General data		max. 10 Msample/s, 10 kpoints
Screen		10.1" MVCA TET color display (1280 y 200 zive
		10.1" WXGA TFT color display (1280 × 800 pixe USB host with MTP, USB device, LAN,
Interfaces		web server for remote display and operation
Audible noise	maximum sound level at a distance of 1.0 m	28.3 dB(A)
Dimensions	W×H×D	390 mm × 220 mm × 152 mm (15.4 in × 8.66 in × 5.98 in)
Weight		2.5 kg (5.5 lb)

[►] For more information, see the R&S®RTB 2 specification document (PD 3673.0734.22) available under www.rohde-schwarz.com.

Service at Rohde & Schwarz

YOU'RE IN GREAT HANDS

	SERVICE PLANS	ON DEMAND
Calibration	Up to five years 1)	Pay per calibration
Warranty and repair	Up to five years 1)	Standard price repair

¹⁾ For extended periods, contact your Rohde & Schwarz sales office. On-site services available on request.

Instrument management made easy

The R&S®InstrumentManager makes it easy to register and manage your instruments. It lets you schedule calibration dates and book services.

Find out more about our service 🕒 portfolio under:

ORDERING INFORMATION

Choose 2-channel or 4-channel instrument

The base model is MSO-ready with 70 MHz bandwidth and the R&S®RTB-B6 arbitrary waveform generator, the R&S®RTB-K15 history and segmented memory option and power cord.

2 Add additional bandwidth

70 MHz (included in base model) 200 MHz 200 MHz 300 MHz

▶

3 Add desired applications/options

Options and applications can be purchased individually or as a bundle.

R&S®RTB2-PK1 bundle

Includes I2C, SPI, UART, RS-232, CAN and LIN serial triggering and decoding and R&S®RTB-K36 frequency response analysis (Bode plot) option

Choose from the oscilloscope probes

Each R&S®RTB 2 comes standard with one R&S®RT-ZP03S passive probe per channel. The instrument is compatible with other Rohde & Schwarz and third-party probes that connect to a BNC interface.

Add logic probes (MSO)

R&S®RTB 2 is MSO-ready, which makes mixed signal capability a standard functionality of the oscilloscope. Just add R&S®RTB2-B1 option (two logic probes (MSO)) to use up to 16 digital channels.

For more information, see the product brochure: Probes and accessories for Rohde & Schwarz oscilloscopes (PD 3606.8866.12).

1333.1005.0 2 ry and segmented memor 1333.1005.0 manual and safety instructions 1333.1163.0 2 1333.1170.0 2 1333.1186.0 2 1333.1257.0 2801.8421.02 part of R&S®RTB2-PK1 part of R&S®RTB2-PK1 part of R&S®RTB2-PK1 part of
2 ry and segmented memory 333.1005.0 manual and safety instructions 1333.1163.0 2 1333.1170.0 2 1333.1186.0 2 1333.1257.0 2801.8421.02 part of R&SSRUBS-BK1 part of R&SSRUBS-PK1 part of
1333.1163.0 2 1333.1170.0 2 1333.1186.0 2 1333.1257.0 2801.8421.02 part of R&S*RTB2-PK1 part of
1333.1163.0 2 1333.1170.0 2 1333.1186.0 2 1333.1257.0 2801.8421.02 part of R&SSRIEGS-PK1 part of R&SSRIEGS-PK1 part of
2 1333.1170.0 2 1333.1186.0 2 1333.1257.0 2801.8421.02 part of R&S3RU62.DK1 part of R&S9RTB2-PK1 part of
1333.1170.0 2 1333.1186.0 2 1333.1257.0 2801.8421.02 part of R&S\$RUE\$2.BK1 part of R&S\$RUE\$2.PK1 part of
2 1333.1186.0 2 1333.1257.0 2801.8421.02 part of R&S3RIZM23.DK1 part of R&S9RTB2-PK1 part of
1333.1186.0 2 1333.1257.0 2801.8421.02 part of R&SSRIEM2-PK1 part of R&SSRTD2-PK1 part of
2 1333.1257.0 2801.8421.02 part of R&S\$RIE\$2.BK1 part of R&S\$RTB2-PK1 part of
1333.1257.0 2801.8421.02 part of R&S3RICK2.PK1 part of R&S°RTB2-PK1 part of
2801.8421.02 part of R8:33RIZE: 2.PK1 part of R :8:S*RTB2-PK1 part of
R&SSRIEM2-PK1 part of R&S®RTB2-PK1 part of
2 &S®RTB2-PK1 part of
R&S3RID272-D K1 part of
2 &S®RTB2-PK1
1801.8438.02
1803.1001.0
2
1333.2401.0
2
1409.7550.0
Q 3333.0873.0
2 333.1370.0
2 409.7720.0
2 409.7737.02
1333.0850.0
2
1333.0844.0
2
1409.7750.0
2
1409.7766.0
2 333.0715.02
1409.7772.0
2 594.4015.0
2 409.7789.0
2 335.7875.0
2 333.1728.0
2
1333.1734.0
K 2

